Errors and ozone measurement

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Instrumental Variables Regression with Measurement Errors and Multicollinearity in Instruments

In this paper we obtain a consistent estimator when there exist some measurement errors and multicollinearity in the instrumental variables in a two stage least square estimation of parameters. We investigate the asymptotic distribution of the proposed estimator and discuss its properties using some theoretical proofs and a simulation study. A real numerical application is also provided for mor...

متن کامل

Modelling measurement errors

Models are developed to adjust for measurement errors in Normally distributed predictor and response variables and categorical predictors with misclassification errors. The models allow for a hierarchical data structure and for correlations among the errors and misclassifications. MCMC estimation is used and implemented in a set of MATLAB macros.

متن کامل

How to Represent Measurement Errors ?

What is the set of possible values of a measurement error? In the majority of practical applications, an error is caused not by a single cause; it is caused by a large number of independent causes, each of which adds a small component to the total error. As a result, we get a geometric description of the area of possible values of error. In this paper, we formulate the known result (for 1-dimen...

متن کامل

Measurement Errors in Investment Equations*

We use Monte Carlo simulations and real data to assess the performance of methods dealing with measurement error in investment equations. Our experiments show that fixed effects, error heteroscedasticity, and data skewness severely affect the performance and reliability of methods found in the literature. Estimators that use higher-order moments return biased coefficients for (both) mismeasured...

متن کامل

Clustering data with measurement errors

Traditional clustering methods assume that there is no measurement error, or uncertainty, associated with data. Often, however, real world applications require treatment of data that have such errors. In the presence of measurement errors, well-known clustering methods like k-means and hierarchical clustering may not produce satisfactory results. The fundamental question addressed in this paper...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nature

سال: 1993

ISSN: 0028-0836,1476-4687

DOI: 10.1038/364198b0